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Mole balance equations for reversible step-growth polymerization in homogeneous continuous flow reactors 
are found to comprise a large set of interacting algebraic equations. These equations have been decoupled and 
made sequential under a transformation. The solution of these can now be adopted on any calculator and 
there is considerable computation saving using the technique presented in this paper. From the mole balance 
equations, the moment generating function has been derived to be a Riccatti differential equation with its 
coefficients dependent on a variable s. Under a suitable transformation, it reduces into two linear ordinary 
differential equations. The latter has a solution in the vector-Volterra form and can be represented by an 
infinite series. Subsequently, for irreversible polymerization with unequal reactivity, an analytical solution of 
the MWD has been derived. 
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I N T R O D U C T I O N  

Polymer formation from monomer occurs through the 
presence of growth centres. Polymerization is broadly 
classified into chain-growth and step-growth reactions, 
depending upon the nature of these growth centres ~ -5. In 
step-growth polymerization, polymerization occurs 
through reaction of functional groups. Depending upon 
whether the starting monomer is bifunctional or 
multifunctional, the resulting polymer is either linear or 
branched (or network) in molecular structure. The step- 
growth polymerization of bifunctional monomers ARB, 
where A and B are reacting functional groups, can be 
schematically written as 

kp mn 
P,+Pm ~ Pm+,+W 

k '  v . . . .  

m, n=  1, 2 (1) 

where Pm is a polymer molecule with m repeat units, W is a 
low molecular weight condensation product, kp,,~ and 
k'p,m+, are the rate constants for the forward and reverse 
reaction steps, which are in general chain-length 
dependent. 

The forward and reverse rate constants in equation (1) 
are usually complex functions of chain lengths of the 
polymer molecules involved. Based on experimental 
results of Bhide and Sudborough 6 on the esterification of 
aliphatic acids in presence of excess of ethanol, Flory was 
the first to propose the equal reactivity hypothesis 7'8. In 
this, kp,m. and k~,m+, were assumed to be independent of 
chain lengths m and n. Under this assumption, the mole 
balance equations of various species collapse into one and 
the overall polymerization can be represented by reaction 
of functional groups. Industrially, polymerization can 

either be carried out in batch or continuous reactors and 
the analysis of these reactors for step-growth 
polymerization has recently been reviewed 9-13. 

Mathematical results derived from the equal reactivity 
hypothesis have been used to explain the gross kinetic 
features. Comparison with experimental data shows that 
polymerization is far more complex than is represented by 
the equal reactivity hypothesis 12-17. In literature, the 
discrepancy between the two is explained by the unequal 
reactivity hypothesis, which can arise either owing to the 
unequal reactivity of functional groups or the chain- 
length dependent reactivities in the forward and the 
reverse steps of equation (1). Case 14 has analysed various 
situations of the former type using probabilistic 
arguments and derived the molecular weight distribution 
( M W D )  in terms of the conversion of functional groups. 
The effect of unequal reactivity was then shown to have 
considerable effect on the M W D  of the polymer. 

Nanda and Jain Is have analysed the case of chain 
length dependent reactivity in irreversible step-growth 
polymerization. They assumed the forward rate constant 
to be falling linearly with chain length and derived the 
M WD. Recent experiments have shown that the change in 
the reactivity of functional groups with chain length is 
described by an S-shaped curve ~ 7. This reactivity change 
has been approximated by a step function in which the 
monomer is assumed to react differently to other 
oligomers ~ 8-25. This can be idealized into two different 
limiting cases: in the first P1 is assumed to react with P1 
alone with one (different) rate constant and in the second, 
P~ reacts with all oligomers with another (different) rate 
constant. The reverse reaction involves the interaction of 
the condensation product W and a large polymer 
molecule. Since the latter is coiled the chain ends would be 

0032-3861/86/081261-08503.00 
© 1986 Butterworth & Co. (Publishers) Ltd. POLYMER, 1 986, Vol 27, August 1261 



M W D  in reversible polymerization." A. Kumar 

buried within. It has been argued in the literature 12 that 
this might lead to some sort of molecular shielding, this 
giving lower reactivity to the end positions. In addition, if 
P1 reacts with P, at a different rate constant, it may also 
be argued that P2 may also react differently in the reverse 
reaction. The unequal reactivity in the reverse reaction 
makes the analysis extremely complex and in this 
paper we have ignored this effect to keep the analysis 
simple. 

Polymerization can be carried out either in batch or 
continuous reactors. As higher and higher throughputs 
are desired, large continuous reactors are required and 
usually tubular reactors or tanks with agitators are 
employed. These are usually idealized as plug flow 
reactors (PFR) and homogeneous continuous flow 
stirred tank reactors (HCTR). Most of the studies existing 
in the literature on MWD of the polymer formed in 
HCTR, whether the hypothesis or equal reactivity or 
chain-length dependent reactivity is used, assumes that 
polymerization occurs under irreversible conditions. 

The major difficulty of solving the MWD of reversible 
ARB polymerization with chain-length dependent 
reactivity lies in the fact that the growth step consists of 
infinite elementary reactions. Since the molar balance 
equations of individual polymer species do not collapse 
into one, the overall polymerization cannot be written in 
terms of the reaction of functional groups. In addition to 
these equations being non-linear in nature, to solve any 
given equation for the concentration of any given species, 
one must know the concentration of all other species. If 
the HCTR is operating at steady state, one obtains a 
large number of non-linear algebraic equations that must 
be solved simultaneously. The total number of such 
equations to be solved is chosen such that the 
concentration of the last species is negligibly small. One 
uses either the Newton-Raphson or Brown technique to 
determine the MWD of the polymer numerically 26. The 
computer calculation of MWD is tedious and requires 
considerable computation time. 

In this paper, the mole balance in HCFR for reversible 
ARB polymerization, with monomer reacting with itself 
at a different rate, has been written. The feed is assumed to 
consist of higher oligomers in addition to the monomer. 
Using a suitable transformation, the MWD equations are 
first decoupled and subsequently an analytical solution is 
found. 

THEORY 

It is assumed that P1 reacts with itself with a different rate 
constant (i.e. k, 1) whereas all other oligomers react with 
the same rate constant (i.e. kp). To simplify the 
mathematics, we ignore the unequal reactivity in the 
reverse step. This means that 

k~,,,=kl, (2a) 

kp.~,=2kv; m#n; m,n= 1,2 . . . .  (2b) 

~,,~ = kv; m = 2,3 . . . .  (2c) 

k;,., = k;; m = 2,3 . . . .  (2d) 

The schematic diagram of an HCFR is shown in Figure 1. 
The feed is assumed to have various oligomers at 

concentrations [P1]o, [P2]o, [P3]o etc. as shown. For an 
isothermal HCFR operating at steady state, one has 

[P,] _[P,]o 
- 2(kx, - kp)[P,] 2 - 2kp[ P,] [P] 

0' 0' 

+ 2k'p[W] ~ [P,] 
/'=2 

(3a) 

[P2] [P2]o 
0' = 0 - - S ~  + k ' ' [ P ' ] 2 -  2kp[p2][p] _ k~[W][P2 ] 

+ 2kp[W] ~ [P,] 
r=3 

(3b) 

[P,] [P,]o " - '  
O' = O' +kv Z [P , ] [P , - , ] -2kp [P , ] [P ]  

r = l  

-kp(n-1)[W][P,]+2k;[W] ~ [P,] 
r = n + l  

n>~3 

[W] = [W]o F. 
O' O' O' 

~-(kl, - kp)[P,] 2 + kp[P] 2 

(3c) 

- kp[W]([P] o - [P]) (3d) 

where 

0'= V/F (4a) 

[P] = ~. [Pd (4b) 
i=1 

[P]o = ~ [PJo (4c) 
i = i  

Above V and F are the reactor volume and feed flow rate, 
respectively. One defines the following dimensionless 
variables 

[Pn]0 
e,o = - -  (5a) 

[P]o 

[P.]. 
P " = [ P ] o '  n=1,2 ,3  . . . .  (5b) 

p =  [P ]  
[P]o (5c) 

P;o, P2o, P3o ..... 

I 

Figure 1 Schematic diagram of HCFR 

PI 'P2' P3 ..... 
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w -  [w] 
[P]o 

(5d) 

R_. kll 
kp 

(5e) 

fl = 2k~kp 

O=kpO'EP] 2 

(50 

(5g) 

One observes that 

. - 1  

t,,=P- Z 
i = n + l  i = 1  

On substituting this in equation (3), one obtains 

(6) 

where 
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dimensionless variable defined in equation (5b). 
Multiplying equation (3a) by s, (3b) by s 2 and (3c) by s" and 
summing for all possible values of n, one gets 

- - =  2W sP-  G G-G°o -(R-1)p2(2s-s2)+G2-2PG+ f l (1-s )  

oo 

- Wfl E s"(n- 1)P. 
n = l  

It may be observed from equation (12) that 

(13) 

GO 

3G Z nsnp, (14) 
S~S ~n= 1 

and in light of this equation (13) reduces to 

.-1 G_Go 
vnPn=Un + ~ Pr(P._r-fl); n>~ 2 (7) 0 

r = l  

(8a) u z = ~ + 2fl WP + (R - 1)P~ 

eno un=~-+2flWP; n>~3 (8b) 

and 1 
v.=~+P+flW(n+l): n>~2 (9) 

On adding equations (3a), (3b) and (3c), for all values of n, 
one can obtain an expression for P which is found to 
involve W and P~ in addition to P. It is thus seen that, one 
must solve the following equations simultaneously: 

(;+2P+2flW)P1 +2(R-1)P~ = ( ~ +  2flWP) 

(lOa) 

Fw t- {(RI - 1)P 2 + p2 -flW(1 - P)} (10b) 
0 

w Wo 

(10c) 

0 0 

P I + { _ ( R  1 1)p2-p2+flW(I-P)} 
0 0 

If the reactor is operating strictly batchwise (which means 
that the condensation product is not allowed to leave the 
reaction mass), the moles of W in the reaction mass would 
be exactly equal to the moles of functional groups reacted, 
i.e. 

(W - W0) = (1 - P) (11) 

The solution of equation (10) can be found only by trial 
and error using any standard numerical technique. In this 
paper, we have used Newton-Raphson technique. After 
solving for P, P1 and W, these are substituted in equation 
(7) and the MWD of the polymer is solved sequentially. 

Moment generating function 
One defines moment generating function G(s,O) as 

G(s,O)= ~ s"P. (12) 
. = 1  

where s is a dummy variable which is less than i and P. the 

sP-G 
( R -  1)(2s- s2)p 2 + G 2 - 2PG + 2flW~ 

U -s)  

where 

Go= ~ g'P.o (16) 
t1=1 

Irreversible polymerization 
It is possible to derive the analytical solution of the 

MWD of the polymer formed in HCTR with unequal 
reactivity as follows. If the polymerization is irreversible, 
equation (15) yields the moment generating function 

G -  G O = _ (R - 1)(2s- s 2)P2 + G 2 _ 2PG (17) 
0 

From this G can be solved as 

G=~[(2P+~)-{ (2P+~)  2 

) ' ]  1 / 2 q  

-4{-~--(R--l)(2s--sZ)P~l~ j (18) 

now be easily Expressions of various moments can 
derived. The zeroth moment, 2 0, is the same as P and its 
expression has already been derived earlier. The first 
moment, 21 , is equal to the number of units which is time 
invariant and is given by 

)q(t)= Z nPno=21o (19) 
n = l  

The second moment, 22, is given by 

22 = l i m ~ s ~ G ' ] ~  (20) 

and with the help of equation (18), one obtains 

).2----Ull/2{~--2(R - 1)p12} + 2u 1 3 / 2 ( ~ )  2 (21) 
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where 

l f{1 2p~ 2 4P o I ) P ~  
/ -w+<=- J 

(22) 

The molecular weight distribution for a given feed can 
easily be found out with the help of equation (18), which 
needs to be expanded in a series and the multiplying factor 
of s ~ collected. This gives P, for the specified feed. Let us 
consider monomer as the feed, in which case Go is given as 

G O = P, o s (23) 

Equation (18) gives G as 

1 
G=-2{x-xx/1 -y}  (24) 

where 

x = ( ~ + 2 P )  (25a) 

I ~ P l O~ - 1)P~ (2~ - s2 )}  (25b) Y-xz [  0 (R-  

"~- ~I s -t- ~2 $2 (25c) 

- 4 ~  ex° - 1)p 2} (25d) 
6t -x2[  0 2 ( R -  

In equation (24), ~ can be expanded in series to 
obtain 

1 G = ~x{dly + d2y 2 + d3y 3 +...} (26) 

where 

A( i) 
d. n] n = 1, 2 . . . .  (27) 

Next one makes y equal to (6ls + 62s 2) in equation (26) 
and finds the coefficient of s" as 

1 (n ~_~)/2 
P" =-2 i~o [("+')/:]+~C[~"-l)/2]-'d[<"+1)/2]+16~6~"-1)/2]-~ for odd n 

1 . /2  . • " (28)  = ~ ~ <"a)+'C(./z)_id(./2)+i6'16~/2)-' for even n 
"~i=0 

Moment 9eneratin# function for reversible polymerization 
If equation (15) is differentiated with respect to s once, 

one obtains 

1 0 - {  8G aG°.~ _ (R_ l)(2_ 2s)p2 + 2GOG_ 2pC?_ G 
~s 8s J = ~s Os 

2 3(sP--G] flW(3sOG t~G~ + 

(29) 

If the limit of this equation for s--~l is evaluated it is found 
that this equation is satisfied and it does not relate 22 to 21 
and 20 . It is therefore necessary that the differential 
equation for G be solved first before an explicit relation for 
22 is obtained. 

To solve for G from equation (15), one defines X as 

X=(1  - s )  (30) 

in terms of which equation (15) becomes 

f,,flW(1 - X X2)p 1 t ~z X )P - (R - 1)(1 

(31) 

The boundary condition on equation (31) is obtained by 
observing that G =  P when s---.1, or 

at  X = 0,  G = P (32)  

Equation (31) can be rearranged to give 

OG - K I - 2  _(  271 2 )  ( 7~- ,Ta 

- 74(X + 1)~ = 0 
) 

(33) 

where 

1 
K1 =flW (34a) 

1 / 0  + 2P 
t- 1 (34b) 

71= 2flW 

72 = Go/flWO (34c) 

7a = 2P (34d) 

(R- 1)P  
(34e) 74 pW 

To solve for G from equation (33), one defines 

y2(O,s) G(O,s) = - -  (35) 
Yl (O,s) 

where Yi (0,s) and y2(O,S) are given by 

t3Yl ( 71 1 ) K1 
6~S -----~ ( l~--X~q.-~- j~yl  q - ( T ~ y  2 (36a)  

0Y2 ( 72 . 73 t t  71 1 

(36b) 

These can now be written in the standard matrix equation 
form 

~'=Ay (37) 
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where 

[o ,i 
• Os 

t-~-s J 

(38a) 

y=[Y'I LY2J 
[ 7t 1~ -L 

Y2 Ya 
- { ( l ~ + ~ - y 4 ( 1  +X)} 

(38b) 

" % )  ] 

( 7, 1 1 /  

(38c) 
The solution of a matrix equation (of the form of 

equation (37)) is not straightforward wherever the 
components of matrix A is function of X. In the case when 
A is a function of X, the solution is of the vector-Volterra 
form and is given by an infinite series as follows. Matrix 
is defined as 

~b = I + Q(A) + Q(AQ(A)) + Q(AQ(AQ(A))) + , , ,  (39) 

where Q is an operator given by 

x 

Q(.) = f (.)dz 
z 

(40) 

The solution of equation (37) is then 

y(X )=q~Yo (41) 

where Yo is the initial condition on y. Some of the terms of 
equation (39) have been derived and are given in the 
Appendix, from which it is clearly seen that it is not 
possible analytically to get third terms and beyond. If one 
represents 4~ as 

(42) 

then G is given by 

G =  q~21Ylo + q~22Y20 
(~1 lYto +(~12Y20 

t~21 + P(~22 
~bl, +~12 P 

(43) 

Once G is obtained, one can in principle determine the 
entire MWD and the second moment 22; however it does 
not appear to be easy analytically. 

RESULTS AND DISCUSSION 

The numerical technique of sequential computation of 
MWD is easy to implement. Earlier 22'23,25,26 we have 
treated the various mole balance relations as a set of non- 
linear algebraic equations and solved them using the 
Brown technique; to get the MWD for a given residence 
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time 0, the time of polymerization was divided into small 
increments, A0. This was done owing to the difficulty of 
providing a good initial guess which is close to the actual 
solution for every computation step. At 0 = 0, the outlet of 
the reactor would have polymer molecules at the 
concentrations as in feed. Therefore the MWD of the 
polymer at A0 was computed using feed values as the 
initial guess, that as 2A0 was determined using the MWD 
at A0 as the initial guess and so on. 

While using the Brown technique to get the MWD, AO 
and the maximum number of equations, No, that has to be 
solved simultaneously to obtain a stable numerical 
solution must be chosen. Preferably A0 is kept as large as 
possible, but then the constraint of the initial guess being 
close to the actual solution cannot be satisfied. 
Simultaneously, the value of Nc chosen should be such 
that the truncation error arising due to neglecting 
concentrations of higher oligomers should be small. This 
would imply that Nc should increase with time of 
polymerization and would depend upon the current value 
of 'oN. which can be neglected. To obtain MWD using the 
Brown technique is time consuming and the approximate 
CPU time required for the Dec. 1090 computer, with 
0 = 1.5 and A0 = 0.5 for 153 equations, is about 70 minutes. 

The numerical technique outlined in this paper is 
extremely efficient and the MWD of the polymer at any 
given reactor residence time 0 can be obtained without 
making any sequential computation scheme as outlined 
above. For example for 0= 100, the entire MWD was 
obtained in 0.25 s CPU time. Equations (10a), (10b) and 
(10c) are first solved using the Newton-Raphson method 
as follows. For a batch reactor the concentration of the 
condensation product is given by equation (11), which 
means that 

0W 
OP-= - 1 (44) 

(OP1/OP) can be found using equation (lOa) to get 

BOB OC I OP t 1 OB ~ + 2 A ~  

OP - 2A --~P-f ~/B 2 +4AC (45) 

where 
A = 2 ( R -  1)P~ z (46a) 

1 
B = ~ + 2P + 2fl W (46b) 

C = ~ -  + 2fl WP (46c) 

OB ~W 
2 + 2fl~-~ (46d) UF 

OC OW 
~ = 2 fl e - ~  + 2 fl W (46e) 

To apply the Newton-Raphson technique an initial guess 
of P is made (i.e. P =  1). Using this, P1 and (OP,/OP) are 
computed and then: 

1 - P  
F ( P ) = ~ -  ( R -  1)P~-P2 + f lW(1 -P )  (47a) 
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and 

aF 1 2 (R-  0P1 1)p, T F -  2P+3(1- P),._ -/7 w 
(47b) 

The next trial value of P is calculated, p~k + ~); the following 
relation is always found to lead to convergence 

P+'= 1,2{P +(P-(8FIFdp))} (48, 

If pk+~ is more than one, to keep the guess value of P 
between 0 and 1, P '+ l  is taken as ( l+pk)/2 and the 
computation from equation (48) is ignored. Similarly is 
equation (48) gives pk+Z less than 0, pk+l is taken as P/2 
and the computation from equation (48) is ignored. 

The entire MWD has been computed for several values 
of the reverse rate constant, /7, the unequal reactivity 
ratio, R, and reactor residence times, 0. The method 
consists of first determining P and P~ and then using 
equation (9) for all values of n. In generating results 
presented in this paper it has been assumed that feed 
consists of monomer only, even though the scheme 
presented here is valid for any feed. Unlike the irreversible 
case, the polymer chains stop growing as equilibrium is 
approached and the equilibrium MWD can be easily 
obtained by putting 1/0 = 0.0 in equations (7)-(9). Finally, 
by substituting R = 1 above, results for the case of equal 
reactivity can be derived. The results are then 
considerably more simplified because P can be solved 
from equation (10c) without any trial and error. Once P is 
computed, the entire MWD can be easily determined from 
equations (7)-(9). 

The MWD of the polymer from HCFR for irreversible 
polymerization has been studied earlier ~2. It has been 
found that the MWD splits into two curves for the odd 
and even n for R > 1. Ror R < 1, substantial amounts of 
unreacted monomer are present in the product stream 
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8 
Figure 2 Effect of  R and/7 on the concentration of monomer P1 versus 
reactor residence time 0. Parameters R, 0 and fl as defined in equation (5) 
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Figure 3 Effect of R and fl on the average chain length, /t,, and 
polydispersity index, p, versus 0: ( ), p; ( - - - ) ,  #,. Parameters R, 0 
and fl as defined in equation (5) 

and curve splitting does not occur. We have derived an 
analytical expression of the MWD given in equation (29) 
which involves rate constant, 0, P and P1. The presence of 
the reverse reaction does not change the nature of the 
MWD, which splits exactly as earlier. The presence of the 
reverse reaction only reduces the amount of the split for 
the odd and even n compared with that found for the 
irreversible case. 

In Figure 2, Pt as a function of 0 has been plotted for 
various R and ft. For R=0.1, fl has been increased. As 0 
increases, P1 falls sharply first but for large 0 it approaches 
an asymptotic value. For any R, as fl increases, the 
asymptotic value of Pi is found to increase. This is 
expected because as fl increases, more unreacted 
monomer is going to be present in the reaction mass. As R 
is increased, no matter what the value offl is, the tendency 
of the monomer to react is expected to increase, this way 
raising the asymptotic P1 in the reaction mass. Figure 3 
gives the average chain length,/~,, and the polydispersity 
index, p, in the reaction mass. In this figure we have 
plotted results up to 0 = 9 to bring out the effect of R and fl 
on the polydispersity index, p, which is found to increase 
sharply first for small 0, then to fall after passing through a 
maximum. The fall in p slows down considerably for 0> 3 
for the ranges of/7 and R studied here. The maximum 
value of p is found to fall when either fl or R or both are 
increased. For the range of 0 plotted in this graph, the 
average chain length/~, is found to increase; however its 
rate of increase slows down as 0 increases. This is due to 
the fact that, for large 0, the reverse reaction gains in 
importance and polymerization begins to slow down as 
equilibrium is approached. 

In Figures 4, 5 and 6, results for equilibrium 
polymerization are given. Figure 4 gives the equilibrium 
molecular weight distribution, MWDeq,il. Ml¥/)~tuil is 
found to split even though for large n, curves for even and 
odd n merge. Even though MWD~quU is affected by R, the 
effect is small and cannot be shown in Figure 4. In Figure 5 
the equilibrium P and P1 (denoted by P~q and P ~ )  is 
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Figure 4 Effect of  R on the equi l ibr ium M W D  for fl = 0.1. Paramete rs  
R, 0 and  fl as defined in equa t ion  (5) 
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Figure 5 Effect of R and fl on equilibrium P and P l : ( ), P; ( - - - ) ,  
P~. Parameters R, 0 and fl as defined in equation (5) 

shown as a function of fl for various values of R. For  a 
given R, as fl is increased, the reverse reaction gains in 
importance and Peq and P~q are found both to increase as 
seen. For  a given r,  as R is increased, P~q and P~cq are 
found both to decrease. This is expected because on 
increasing R, monomer reacts to form higher oligomers, 
thus giving reduced P and P1 in the reaction mass. In 
Figure 6 equilibrium values of/t .  and p have been plotted 
as a function of fl for various values of R. For  the same 
reasons, #. and p both fall monotonically as fl or R is 
reduced. 

M W D  in  revers ib le  p o l y m e r i z a t i o n :  A. K u m a r  

CONCLUSIONS 

The computations of M W D  of reversible step-growth 
polymerization for a given residence time is a solution of a 
large number of interacting non-linear algebraic 
equations. This takes a considerable amount of 
computation time on fast computers. It is possible to 
rearrange these algebraic equations in such a way that 
they become non-interacting in nature. A computation 
scheme has been developed in which concentrations of 
monomer, P~ and that of functional groups in the reaction 
mass, P, are first solved using the Newton-Raphson 
technique. The entire M WD can be determined in terms of 
P and P r  

The moment generating function for reversible 
polymerization in HCFR has been derived and is found to 
be a Ricatti equation. Under a transformation, it is found 
to reduce into two linear differential equation whose 
coefficients are functions of a variable, s. The solution of 
these is not straightforward and has been suggested to be 
in vector-Volterra form. On further manipulations, the 
solution of G is obtained as an infinite series. 

For irreversible polymerization with unequal 
reactivity, the equation governing G reduces to an 
algebraic equation. From this, the M W D  for monomer 
feed has been derived, and the concentration of P, is found 
to be given by an infinite series. The expressions for odd 
and even n are found to be different, thus explaining the 
split in the M W D  as found in an earlier analysis. 

The equilibrium molecular weight distribution and its 
properties have been investigated for step growth 
polymerization with unequal reactivity. The equilibrium 
M W D  is affected by the unequal reactivity ratio, R, as well 
as by the equilibrium rate constant, ft. The effect of R is 
found to be small, but increasing fl makes the M W D  
sharper because of smaller conversion. For a given R,/~, 
and p both fall drastically as fl is increased from a small 
value; however for large r ,  this change is small. For a 
given r ,  as R is increased,/~, as well as p both fall. 
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Figure 6 Effect of R and fl on equilibrium/z, and p: 
p. Parameters R, 8 and fl as defined in equation (5) 
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A P P E N D I X  

Some terms o f  equation (39) 

A =  [ T2 . ~'3 "1 X "] { ~'' i ~ /  

Q ( A ) =  ~ 2 1 n ( 1 - X ) - ~ 3 1 n X + ~ ,  X +  - h  l n ( 1 - X ) + I n  X 

- 1-~X + 1  K l n ( l - X )  { 1 7 _ - ~ X + I } { h l n ( 1 - X ) - l n X } + I K _ ~ x ? 2 1 n ( 1 - X ) - ~ 3 1 n X + 7 " ( X + ~ - ) }  ' ( _ )  

+ (1 _~Kx){  - h  In(1 - X )  + I n  X} 

A Q ( A ) =  [ ~'2 +Y3 . I + X ) ] { y j n ( I _ X ) _ l n X } + [  h + l ' ~ { y 2 1 n ( I _ X ) _ 7 3 1 n X + y 4 ( X + X 2 / 2 ) }  ~ f~--X -X] - 

Y2 ,Ys , ~ + X ) } K l n ( I  f h 1 ) f  l n ( 1 - X ) + l n X }  
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